Deep Learning Classification System: How Build One Without Major Investment

Deep learning is going to change the machine vision landscape in a huge way. New applications have been enabled by deep learning, and it disrupts established markets. The product manager at FLIR visits companies over a wide range of industries, and every company they visited this year is working on deep learning.

It has never been more simple to get started, but the difficulty is knowing where to begin. This article will outline a simple-to-follow framework for building a deep learning inference system for under $600.

What is Deep Learning Inference?

Inference is the utilization of a deep-learning-trained neural network to make predictions on new data. Inference is a lot better at answering subjective and complex questions than traditional rules-based image analysis.

Inference can be run on the edge near the data source by optimizing networks to run on low-power hardware. This eliminates the system’s dependence on a central server for image analysis, resulting in higher reliability, lower latency, and better security.

1. Choosing the Hardware

The aim of this guide is to create a high-quality, reliable system to deploy in the field. Combining deep learning inference with traditional computer vision methods can deliver computational efficiency and high accuracy and by leveraging the strengths of each method.

For this technique, the Aaeon UP Squared-Celeron-4GB-32GB single-board computer has the memory and CPU power required. Its X64 Intel CPU runs the same software as traditional desktop PCs, simplifying development compared to ARM-based, single-board computers (SBCs).

The code which allows deep learning inference utilizes branching logic; the execution of this code can be greatly accelerated by using dedicated hardware. The Intel® Movidius™ Myriad™ 2 Vision Processing Unit (VPU) is an extremely powerful and efficient inference accelerator, which has been integrated into the new inference camera from FLIR, the Firefly DL.

Source: FLIR Systems

Part Part Number Price [USD]
USB3 Vision Deep Learning
Enabled Camera
FFY-U3-16S2M-DL 299
Single Board Computer UP Squared-Celeron-4GB-32GB-PACK 239
3m USB 3 cablel ACC-01-2300 10
Lens ACC-01-4000 10
Software Ubuntu 16.04/18.04, TensorFlow,
Intel NCSDK, FLIR Spinnaker SDK
0
  Total $558  

 

2. Software Requirements

There are a number of free tools available for training, building, and deploying deep learning inference models. This project utilizes a range of free and open-source software. Each software package has installation instructions available on its respective websites. This guide assumes that the user is familiar with the basics of the Linux console.

Image Credit: FLIR Systems

Collect Training
Data
Train Network
(augmentation optional)
Evaluate
performance  
Convert to Movidius
graph format
Deploy to 
Firefly DL camera
Run inference on
captured images 

Figure 1. Deep learning inference workflow and the associated tools for each step. Image Credit: FLIR Systems

3. Detailed Guide

Getting Started with Firefly Deep Learning on Linux supplies an introduction on how to retrain a neural network and convert the resulting file into a firefly compatible format, and show the results using SpinView. Users are given a step-by-step process on how to train and convert inference networks themselves via terminal.

FLIR Logo

This information has been sourced, reviewed and adapted from materials provided by FLIR Systems.

For more information on this source, please visit FLIR Systems.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    FLIR Systems. (2024, June 21). Deep Learning Classification System: How Build One Without Major Investment. AZoSensors. Retrieved on December 10, 2024 from https://www.azosensors.com/article.aspx?ArticleID=2183.

  • MLA

    FLIR Systems. "Deep Learning Classification System: How Build One Without Major Investment". AZoSensors. 10 December 2024. <https://www.azosensors.com/article.aspx?ArticleID=2183>.

  • Chicago

    FLIR Systems. "Deep Learning Classification System: How Build One Without Major Investment". AZoSensors. https://www.azosensors.com/article.aspx?ArticleID=2183. (accessed December 10, 2024).

  • Harvard

    FLIR Systems. 2024. Deep Learning Classification System: How Build One Without Major Investment. AZoSensors, viewed 10 December 2024, https://www.azosensors.com/article.aspx?ArticleID=2183.

Ask A Question

Do you have a question you'd like to ask regarding this article?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.