Posted in | Sensors General

Ball Aerospace GPM Microwave Imager Begins Normal Operations

The Ball Aerospace & Technologies Corp. Global Precipitation Measurement (GPM) Microwave Imager started to spin at its normal rate today and collect science data on Earth's rain and snowfall.

Launched aboard NASA's GPM Core Observatory on February 27, GMI's electronics have been turned on and all seven launch restraints released, deploying the instrument. GMI, a multi-channel, conical-scanning microwave radiometer built for NASA, began spinning today collecting the first science data of the mission. The GMI will complete several additional check-out procedures during the commissioning process.

"GMI is on the way to setting a new standard for data accuracy that will provide more timely, detailed information forecasters need to track extreme weather events," said Ball Aerospace President Rob Strain. "Using GMI's data, the world's scientists will have a more accurate picture of the world's precipitation dataset."

The Ball Aerospace-built instrument will deliver more frequent and higher quality data collection than currently available. The eight-foot tall GMI radiometer rotates at 32 revolutions per minute and uses four extremely stable calibration points on each revolution to calibrate the data it scans. The instrument minimizes solar intrusion for added accuracy and features higher frequency channels to measure smaller particles of precipitation such as light rain and snow.

GMI is an essential part of an international satellite mission that will capture next-generation observations of rain and snow worldwide every three hours. The GPM Core Observatory will deliver unprecedented 3-D views of hurricanes and snowstorms and contribute to monitoring and forecasting weather events such as droughts, floods and landslides.

GMI is one example of Ball's long support of the country's weather and climate monitoring efforts. The GPM constellation includes the Ball Aerospace-built Suomi National Polar-orbiting Partnership (NPP) satellite which launched in 2011 and the first Joint Polar Satellite System, currently in development at Ball, both of which will enable faster, more accurate weather forecasting. GPM, along with these two satellites, will significantly enhance our nation's ability to prepare for severe weather events.

GMI's design is based on successful microwave sensors built previously by Ball Aerospace, including the Shuttle Radar Topography Mission (SRTM), the Spaceborne Imaging Radar-C (SIR-C), the GEOSAT Follow-On (GFO-2) and the Submillimeter Wave Astronomy Satellite (SWAS).

Ball Aerospace & Technologies Corp. supports critical missions for national agencies such as the Department of Defense, NASA, NOAA and other U.S. government and commercial entities. The company develops and manufactures spacecraft, advanced instruments and sensors, components, data exploitation systems and RF solutions for strategic, tactical and scientific applications. For more information, visit ballaerospace.com/.

Ball Corporation (NYSE: BLL) supplies innovative, sustainable packaging solutions for beverage, food and household products customers, as well as aerospace and other technologies and services primarily for the U.S. government. Ball Corporation and its subsidiaries employ 14,500 people worldwide and reported 2013 sales of $8.5 billion. For more information, visit www.ball.com, or connect with us on Facebook or Twitter.

Source: http://www.ballaerospace.com

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Ball Aerospace & Technologies Corp. (2019, February 24). Ball Aerospace GPM Microwave Imager Begins Normal Operations. AZoSensors. Retrieved on October 26, 2020 from https://www.azosensors.com/news.aspx?newsID=7514.

  • MLA

    Ball Aerospace & Technologies Corp. "Ball Aerospace GPM Microwave Imager Begins Normal Operations". AZoSensors. 26 October 2020. <https://www.azosensors.com/news.aspx?newsID=7514>.

  • Chicago

    Ball Aerospace & Technologies Corp. "Ball Aerospace GPM Microwave Imager Begins Normal Operations". AZoSensors. https://www.azosensors.com/news.aspx?newsID=7514. (accessed October 26, 2020).

  • Harvard

    Ball Aerospace & Technologies Corp. 2019. Ball Aerospace GPM Microwave Imager Begins Normal Operations. AZoSensors, viewed 26 October 2020, https://www.azosensors.com/news.aspx?newsID=7514.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit