Editorial Feature

Applications and Characteristics of Sensors Made of Ceramics

ImageForArticle_1881_15815057919963647.png

Image Credit: metamorworks/Shutterstock.com

Since their debut in 1950, piezoelectric ceramics have remained a widely used component that has proven useful for various industries ranging from sensors to biomedical imaging devices. Recent technological advancements have allowed these already impressive materials to be further enhanced for a number of sensing applications as well.

Characteristics of Ceramic Sensors

The two primary types of piezoelectric ceramic materials include soft and hard piezoelectric ceramics. The distinction between soft and hard ceramics primarily depends upon whether a donor or acceptor dopant has been added to the ceramic formulation.

Hard piezoelectric ceramics, for example, are created when an acceptor dopant is added to a ceramic formulation, as this reaction causes oxygen, or anion, vacancies to arise within the crystal structure of the material. On the other hand, soft piezoelectric ceramics are created when a small amount of a donor dopant is added to the ceramic’s formulation, as this reaction will instead create metal or cation, vacancies to emerge in the crystal structure of the material. Typically, soft piezoelectric ceramic materials will be used for sensing applications.

Understanding Soft Ceramics

Once a donor dopant has been added to a formulation to create a soft ceramic material, several piezoelectric properties of the ceramic are enhanced. To this end, soft ceramics will typically exhibit high permittivity and dielectric losses, low mechanical quality factors and poor linearity, as well as large electromechanical coupling factors, dielectric constants, and piezoelectric constants. Although soft piezoelectric materials have lower Curie points, thereby limiting the ability of these materials to be used at higher temperatures, these materials are unique in their ability to produce large displacement values and wider signal bandwidths.

Improving Ceramic Sensor Properties

Although traditional ceramic sensors were associated with certain limitations, such as the inability to function well outside of low temperatures, recent advancements in this area have created technical ceramic materials that are not only equipped with exceptional thermal stability characteristics but can also maintain high tensile strength and corrosion resistance for a wide range of challenging environments.

CoorsTek, which is a leading ceramic sensor producer in the world, has created a line of ultra-sensitive pressure and temperature sensors that have been shown to dramatically improve work performed in the chemicals, electronics, agricultural, equipment, and manufacturing industries, as well as within the medical field and during the production of consumer and household items.

In order to be a practical sensor for these applications, the CoorsTek technical ceramics have been altered to exhibit exceptional mechanical, chemical, thermal and electrical properties. As a result of these properties, CoorsTek has found that the incorporation of these technical ceramics into pressure sensors improves the durability, reliability, and precision of these sensors, all the while maintaining superior thermal stability during extreme weather conditions. With these characteristics in mind, CoorsTek has found that their ceramic pressure sensors are ideal for high duty cycle applications, such as those used for agricultural and off-road vehicles, heating, ventilation, and air conditioning (HVAC) systems and much more.

Applications of Ceramic Sensors

In addition to some of the previously discussed applications, ceramic sensors provide innumerable advantages to several other industries. Within the automotive industry, for example, ceramic sensors are often used during the engineering of vehicles in order to improve their safety, cost-effectiveness, and comfort for passengers. In addition to being a major component of various sensor components and transducers that are found within vehicles, technical ceramics can also be used to enhance oil level, distance, knock, pressure and ultrasonic sensors. Additional applications of ceramic sensors include products requiring gas, oxygen, temperature, proximity and capacitive sensing capabilities.

Sources and Further Reading

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Benedette Cuffari

Written by

Benedette Cuffari

After completing her Bachelor of Science in Toxicology with two minors in Spanish and Chemistry in 2016, Benedette continued her studies to complete her Master of Science in Toxicology in May of 2018. During graduate school, Benedette investigated the dermatotoxicity of mechlorethamine and bendamustine; two nitrogen mustard alkylating agents that are used in anticancer therapy.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cuffari, Benedette. (2020, February 12). Applications and Characteristics of Sensors Made of Ceramics. AZoSensors. Retrieved on January 26, 2022 from https://www.azosensors.com/article.aspx?ArticleID=1881.

  • MLA

    Cuffari, Benedette. "Applications and Characteristics of Sensors Made of Ceramics". AZoSensors. 26 January 2022. <https://www.azosensors.com/article.aspx?ArticleID=1881>.

  • Chicago

    Cuffari, Benedette. "Applications and Characteristics of Sensors Made of Ceramics". AZoSensors. https://www.azosensors.com/article.aspx?ArticleID=1881. (accessed January 26, 2022).

  • Harvard

    Cuffari, Benedette. 2020. Applications and Characteristics of Sensors Made of Ceramics. AZoSensors, viewed 26 January 2022, https://www.azosensors.com/article.aspx?ArticleID=1881.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Submit