Editorial Feature

Biological Sensor Inspired by a Worm's Strength

Image Credit: Shutterstock.com/

The Nereis virens is a burrowing marine polychete that is common to the North Atlantic region of the world. One of the most impressive characteristics about this worm is its incredibly strong fang-like jaws, which play a primary role in its feeding and defense mechanisms.

With a hardness and stiffness strength comparable to that which is shown in human dentin, the bony tissue present beneath the enamel of the tooth, the jaw of the Nereis virens exhibits properties that are superior to those that are present in synthetic polymers1. With a reported hardness within the range of 0.4-0.8 gigapascals (GPa)2, the presence of metals, particularly zinc (Zn), in its molecular structure makes the material much stronger as a result of its ability to bond with the proteins. These dynamic protein-metal bonds allow this complex molecular network of the jaw to be capable of rapidly responding to changing environmental conditions through its expansion and contraction behavior.

Comprised of approximately 90% protein constituents, the jaw structure has inspired researchers to develop novel materials that demonstrate similar physical attributes to resemble its architecture, composition and mechanical properties. As such, researchers at the Massachusetts of Technology’s Department of Civil and Environmental Engineering (CEE) were able to draw from previous protein structural studies of the Nereis jaw and develop a multiscale model that is able to predict the mechanical behavior of materials containing the Nvjp-1 protein, which is predominantly present in this worm2. With this model, the research team led by Zhao Qin successfully visualized the atomic arrangements and molecular conformations that represent the supreme mechanical capabilities of this protein material. This predictive model allowed researchers to more fully understand how the protein forms and adjusts to different pH levels, in which this information has been speculated to guide designs for sensor and soft robot devices1.

The Nvjp-1 protein is chiefly composed of histidine-rich Zn binding proteins. The presence of the histidine amino acids in this molecular bond results in a strong attraction to ions present in the environment, which could account for the overall chemical reaction that takes place between the amino acids and metal ions present within this protein1. As the environmental conditions change, the histidine-Zn protein interactions follow this change through ensuing protein conformational changes that therefore affect the way in which the protein material responds.

As a result of not only its ability to maintain its structure in varying acidic environments, the flexible nature of this material makes it ideal for use in environments that exhibit a constant flux in pH. The stomach, for example, is one of the primary biological systems that exhibit varying pH levels. When empty, a normal human stomach will maintain a pH within the range of 1-3, which is extremely acidic in order to maintain the presence of gastric acid that is responsible for food digestion3. Upon food consumption, the pH levels in the stomach raise to as high as 4-5.

As a result of the constant acidity fluctuations that take place not only in the stomach, but also in the small intestine and various other biological systems, the application of the protein in the Nereis jaw could pave the way for multifunctional materials to resemble its structure and exude these properties for a wide variety of appropriate electronic devices1. Current research trends have become increasingly popular in finding methods to develop ingestible sensors that are capable of resisting the acidic environment in the stomach in order to monitor a variety of biological conditions such as bacterial infections, disease diagnosis, medication monitoring and much more4. The Nvjp-1 protein could therefore hold a promising future if implemented in these ingestible sensors, as well as a variety of other biological applications.

References

  1. Broomell, Chris C., Sue F. Chase, Tom Laue, and J. Herbert Waite. "Cutting Edge Structural Protein from the Jaws of Nereis Virens." Biomacromolecules 9.6 (2008): 1669-677. Web.
  2. Schmitt, Carolyn. "Worm-inspired Material Strengthens, Changes Shape in Response to Its Environment." MIT News. 20 Mar. 2017. Web. http://news.mit.edu/2017/bio-inspired-material-changes-shape-and-strengthens-in-response-to-environment-0320.
  3. Loomis, Howard F., D.C. "Digestion in the Stomach." Food Enzyme Institute. Web. http://www.foodenzymeinstitute.com/articles/digestion-in-the-stomach.aspx?list=bydate.
  4. Staedter, Tracy. "Edible Sensors Powered by Stomach Acid." Seeker.com. 22 Sept. 2015. Web. http://www.seeker.com/edible-sensors-powered-by-stomach-acid-1770264729.html.
  5. Shutterstock.com/

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Benedette Cuffari

Written by

Benedette Cuffari

After completing her Bachelor of Science in Toxicology with two minors in Spanish and Chemistry in 2016, Benedette continued her studies to complete her Master of Science in Toxicology in May of 2018. During graduate school, Benedette investigated the dermatotoxicity of mechlorethamine and bendamustine; two nitrogen mustard alkylating agents that are used in anticancer therapy.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cuffari, Benedette. (2017, March 24). Biological Sensor Inspired by a Worm's Strength. AZoSensors. Retrieved on April 26, 2024 from https://www.azosensors.com/article.aspx?ArticleID=772.

  • MLA

    Cuffari, Benedette. "Biological Sensor Inspired by a Worm's Strength". AZoSensors. 26 April 2024. <https://www.azosensors.com/article.aspx?ArticleID=772>.

  • Chicago

    Cuffari, Benedette. "Biological Sensor Inspired by a Worm's Strength". AZoSensors. https://www.azosensors.com/article.aspx?ArticleID=772. (accessed April 26, 2024).

  • Harvard

    Cuffari, Benedette. 2017. Biological Sensor Inspired by a Worm's Strength. AZoSensors, viewed 26 April 2024, https://www.azosensors.com/article.aspx?ArticleID=772.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.