Posted in | News | Chemical Sensor

Electrochemical Sensor for the Ultrasensitive Detection of Nitrobenzene in Honey

Keeping harmful compounds out of the food supply chain is a key factor when ensuring consumer safety. Now, researchers at Ural Federation University and Potovsky Institute of Organic Synthesis, Russia, have developed an advanced ultrasensitive electrochemical sensor that can detect nitrobenzene in commercial honey solutions.

Electrochemical Sensor for the Ultrasensitive Detection of Nitrobenzene in Honey.

Image Credit: Kirill Gorshkov

What’s more, the sensor’s design incorporates a modified screen-printed electrode that facilitates rapid detection of the dangerous compound, in just a matter of minutes. Full details of the development study have been recently published in the journal Food Chemistry.1

Nitrobenzene is a known toxin used in industry as a solvent that enters the environment and food chain as a result of industrial toxic waste. According to the United States Environmental Protection Agency, nitrobenzene is classified as “likely to be carcinogenic to humans” by any route of exposure.2

Prolonged exposure can also produce a range of other side effects, including impaired vision, nausea and fatigue, as well as causing damage to the central nervous system, liver and kidneys.

Thus, it is essential that even just trace levels of the substance are detected so that appropriate action can be taken to ensure consumer safety in the long term.

Nitrobenzene & Honey

Honey is one of the foods known to be particularly vulnerable to nitrobenzene contamination as it is used as an anti-acarapidosis agent in adult bees. Acarapidosis is a contagious and invasive disease that can cause significant depletion and even death of entire bee colonies.

The disease is typically transmitted as a result of a tick infestation in a hive: nitrobenzene is then used as a pesticide that targets said ticks. Already, there are various methods of nitrobenzene detection in the laboratory, including chromatographic, spectrographic and electrochemical techniques.

However, most of the current methods available to scientists in the laboratory are expensive, labor- and time-intensive which in turn makes them limited in their application for rapid, on-site analysis. Yet, due to the portability of electrochemical methods, there is the possibility that this approach could be advanced for cost-effective on-site detection.

The sensitivity and accuracy of such analyzers are determined by the structure of the ‘recognizer’ – the so-called receptor layer. As a rule, it consists of enzymes, universal biological catalysts, which, along with some advantages, have a high cost and low chemical stability.

Alisa Kozitsina, Head of the Research Group, Professor at Ural Federation University.

Modified Approaches

The research team at Ural and the Potovsky Institute modified a screen-printed electrode using a group of organic compounds, known as diazines, as a replacement for enzyme-based systems.

While the principle is similar to portable enzyme-based analyzers, the modification using the 1,3/1,4-diazine class enables selective interaction with the nitrobenzene compounds.

What this means is that the diazine compounds can pull the nitrobenzene out of the sample and onto the electrode of the sensor. The team claims that this then facilitates a portable detection method with ultrasensitive detection and minimized labor costs.

Unlike optical spectral analyzers currently used to search for nitrobenzene, electrochemical sensors are miniature, easy to manufacture, and require an ultra-small amount of the analyzed product. Our recognition system and the prototype of an electrochemical sensor have no direct analogs in the world.

Tatiana Svalova, Ural Federal University

Armed with their innovative approach, researchers were able to determine harmful amounts of nitrobenzene in commercial honey samples that other methods would have missed. The modified sensor demonstrated excellent sensitivity and accuracy with a low detection limit of 0.107 mm for nitrobenzene in the honey samples.

Due to the portability of this approach, the method can be applied both in the laboratory as well as in real-time on-site scenarios, making it a key development for food safety standards. The team’s next objective is making the sensors universally accepted while working on developing new analytical systems for the detection of harmful compounds.

References and Further Reading

Svalova, T., Et. Al, (2021) Rapid and sensitive determination of nitrobenzene in solutions and commercial honey samples using a screen-printed electrode modified by 1,3-/1,4-diazines. Food Chemistry, [online] 372, p.131279. Available at: (2021) Nitrobenzene CASRN 98-95-3 | DTXSID3020964 | IRIS | US EPA, ORD. [online] Available at: (2021) Ученые создали экспресс-датчик для определения токсичности меда. [online] Available at:

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

David J. Cross

Written by

David J. Cross

David is an academic researcher and interdisciplinary artist. David's current research explores how science and technology, particularly the internet and artificial intelligence, can be put into practice to influence a new shift towards utopianism and the reemergent theory of the commons.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cross, David. (2021, October 25). Electrochemical Sensor for the Ultrasensitive Detection of Nitrobenzene in Honey. AZoSensors. Retrieved on July 24, 2024 from

  • MLA

    Cross, David. "Electrochemical Sensor for the Ultrasensitive Detection of Nitrobenzene in Honey". AZoSensors. 24 July 2024. <>.

  • Chicago

    Cross, David. "Electrochemical Sensor for the Ultrasensitive Detection of Nitrobenzene in Honey". AZoSensors. (accessed July 24, 2024).

  • Harvard

    Cross, David. 2021. Electrochemical Sensor for the Ultrasensitive Detection of Nitrobenzene in Honey. AZoSensors, viewed 24 July 2024,

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.