Posted in | News | Light / Image Sensor

Scientists Create Nanoscale Light Sensor

Researchers from the University of Pittsburgh and University of Wisconsin at Madison have created a nanoscale light sensor, that can be combined with near-atomic-size electronic circuitry to produce hybrid optic and electronic devices with new functionality. The team, reports in Nature Photonics that the development overcomes one of nanotechnology's most daunting challenges.

The group, led by Jeremy Levy, a professor of physics and astronomy in Pitt's School of Arts and Sciences, fashioned a photonic device less than 4 nanometers wide. The device can interact with objects as small as single molecules or quantum dots.

Achieving yet another first, the tiny device can be electrically tuned to change its sensitivity to different colours in the visible spectrum, which may forgo the need for the separate light filters other sensors typically require. Levy worked with Pitt postdoctoral researcher and lead author Patrick Irvin, postdoctoral researchers Daniela Bogorin and Cheng Cen, and Pitt graduate student Yanjun Ma. Also part of the team were University of Wisconsin-Madison researchers Chang-Beom Eom, a professor of materials science and engineering, and research associates Chung Wung Bark and Chad Folkman.

The researchers produced the photonic devices via a rewritable nanoelectronics platform developed in Levy's lab that works like a microscopic Etch A Sketch, the drawing toy that initially inspired him and was first reported in Nature Materials in March 2008.

Levy's technique, is a method to switch an oxide crystal between insulating and conducting states. Applying a positive charge to the sharp conducting probe of an atomic force microscope, creates conducting wires only a few nanometers wide at the interface of two insulators—a 1.2 nanometer-thick layer of lanthanum aluminate grown on a strontium titanate substrate. The conducting nanowires can then be erased with reverse voltage, rendering the interface an insulator once more.

In February 2009, Levy reported in Science that his platform could be used to sculpt a high-density memory device and a transistor called a "SketchFET" with features a mere two nanometers in size.

Light is extremely sensitive to the properties of such nanoscale objects as single molecules or quantum dots, but the integration of semiconductor nanowire and nanotube photonic devices with other electronic circuit elements has always been a challenge.

In this recent work, Levy and his colleagues demonstrated a robust method for incorporating light sensitivity into these electronic circuits, using the same techniques and materials. Since photonic devices generate, guide, or detect light waves for a variety of applications, "these results may enable new possibilities for devices that can sense optical properties at the nanoscale and deliver this information in electronic form," Levy said.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Choi, Andy. (2019, February 25). Scientists Create Nanoscale Light Sensor. AZoSensors. Retrieved on April 20, 2024 from https://www.azosensors.com/news.aspx?newsID=1486.

  • MLA

    Choi, Andy. "Scientists Create Nanoscale Light Sensor". AZoSensors. 20 April 2024. <https://www.azosensors.com/news.aspx?newsID=1486>.

  • Chicago

    Choi, Andy. "Scientists Create Nanoscale Light Sensor". AZoSensors. https://www.azosensors.com/news.aspx?newsID=1486. (accessed April 20, 2024).

  • Harvard

    Choi, Andy. 2019. Scientists Create Nanoscale Light Sensor. AZoSensors, viewed 20 April 2024, https://www.azosensors.com/news.aspx?newsID=1486.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.