Posted in | Light / Image Sensor

Princeton Infrared Technologies Announces SBIR Phase II Award for Coherent LADAR Detectors

Princeton Infrared Technologies, Inc. (PIRT),  specialists in indium gallium arsenide (InGaAs) imaging technology and affordable shortwave-infrared (SWIR) linescan cameras, visible-SWIR science cameras, and 1- and 2-D imaging arrays, announces a Small Business Innovation Research (SBIR) award. The Phase II SBIR contract with Air Force Research Laboratory (AFRL) will fund the development of detector arrays for coherent laser detection and ranging (LADAR). Princeton Infrared Technologies will focus on developing detector arrays using multi-quantum well materials enabling detection from 0.9 to 2.4 µm with low-dark current and high-quantum efficiency. This will enable a new generation of high-resolution cameras that can image at, or near, room temperature while allowing high sensitivity in the shortwave-infrared spectrum.  The new arrays will be high speed, enabling next-generation coherent LADAR using arrays versus single-element detectors.

The SBIR Phase II project is a $750,000, 2-year effort that will concentrate on new material development. Princeton Infrared Technologies and its’ subcontractors will be conducting research on the development of new multi-quantum well materials, in addition to strained-superlattice materials manufactured on indium phosphide (InP) substrates. The R&D work will be supported by the Air Force Research Laboratory at Wright-Patterson Air Force Base, Ohio.

President of Princeton Infrared Technologies, Martin H. Ettenberg, Ph.D., notes, “Utilizing multi-quantum well materials will enable high-sensitivity detectors to image beyond what lattice-matched InGaAs detectors can detect in the SWIR range.  These next-generation detector arrays will benefit long-range LADAR used by the Air Force to identify targets. Current systems require cryogenic cooling while these materials will not, thus vastly lowering costs, size, weight, and power. The material development will also be useful in the commercial sector for spectroscopy and industrial imaging.”

Source: https://www.princetonirtech.com/

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Princeton Infrared Technologies, Inc.. (2019, May 10). Princeton Infrared Technologies Announces SBIR Phase II Award for Coherent LADAR Detectors. AZoSensors. Retrieved on August 11, 2020 from https://www.azosensors.com/news.aspx?newsID=12978.

  • MLA

    Princeton Infrared Technologies, Inc.. "Princeton Infrared Technologies Announces SBIR Phase II Award for Coherent LADAR Detectors". AZoSensors. 11 August 2020. <https://www.azosensors.com/news.aspx?newsID=12978>.

  • Chicago

    Princeton Infrared Technologies, Inc.. "Princeton Infrared Technologies Announces SBIR Phase II Award for Coherent LADAR Detectors". AZoSensors. https://www.azosensors.com/news.aspx?newsID=12978. (accessed August 11, 2020).

  • Harvard

    Princeton Infrared Technologies, Inc.. 2019. Princeton Infrared Technologies Announces SBIR Phase II Award for Coherent LADAR Detectors. AZoSensors, viewed 11 August 2020, https://www.azosensors.com/news.aspx?newsID=12978.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Submit