Posted in | News | Signal Processing

Deep-Sea Wireless Network Being Developed by UB Researchers

Wireless networks span the globe. But like a frightened toddler, they don’t go underwater.

Hovannes Kulhandjian and Zahed Hossain dropped two, 40-pound sensors into Lake Erie and then typed a command into a laptop. Photo: Douglas Levere

That may soon change because UB researchers are developing a deep-sea Internet. The technological breakthrough could lead to improvements in tsunami detection, offshore oil and natural gas exploration, surveillance, pollution monitoring and other activities.

“A submerged wireless network will give us an unprecedented ability to collect and analyze data from our oceans in real time, says Tommaso Melodia, associate professor of electrical engineering and the project’s lead researcher. “Making this information available to anyone with a smartphone or computer, especially when a tsunami or other type of disaster occurs, could help save lives.”

Melodia and his students will present a paper, “The Internet Underwater: An IP-compatible Protocol Stack for Commercial Undersea Modems,” at the 8th annual International Conference on Underwater Networks & Systems. Hosted by the Association for Computing Machinery, the conference runs Nov. 11-13 in Taiwan.

Land-based wireless networks rely on radio waves that transmit data via satellites and antennae. Unfortunately, radio waves work poorly underwater. This is why agencies like the Navy and National Oceanic and Atmospheric Administration use sound wave-based techniques to communicate underwater.

For example, NOAA relies on acoustic waves to send data from tsunami sensors on the sea floor to surface buoys. The buoys convert the acoustic waves into radio waves to send the data to a satellite, which then redirects the radio waves back to land-based computers.

Many systems worldwide employ this paradigm, says Melodia, but sharing data between them is difficult because each system often has a different infrastructure. The framework Melodia is developing would solve that problem. It would transmit data from existing and planned underwater sensor networks to laptops, smartphones and other wireless devices in real time.

It would be, in other words, a deep-sea Internet.

Melodia tested the system recently in Lake Erie, a few miles south of downtown Buffalo. Hovannes Kulhandjian and Zahed Hossain, who are both doctoral candidates in his lab, dropped two, 40-pound sensors into the water. Kulhandjian typed a command into a laptop. Seconds later, a series of high-pitched chirps ricocheted off a nearby concrete wall, an indication that the test worked.

The framework has many applications, including linking together buoy networks that detect tsunamis. In these situations, it could deliver a more reliable warning, thereby increasing the odds that coastal residents can evacuate, Melodia says.

It also may help collect oceanographic data and monitoring pollution. The framework will encourage collaboration among researchers and, potentially, eliminate the duplicative deployments of sensors and other equipment, he says.

There are also military and law enforcement applications. For example, drug smugglers recently have deployed makeshift submarines to clandestinely ferry narcotics long distances underwater. An improved, more robust underwater sensor network could help spot these vessels.

The framework also could be useful to the energy industry, which typically relies on seismic waves to search for underwater oil and natural gas. Industry’s efforts could be aided by networks of interconnected devices working together, he says.

The project, which is funded by the National Science Foundation, is a collaborative effort that includes UB researchers Stella N. Batalama and Dimitris A. Pados, professors of electrical engineering; Weifeng Su, associate professor of electrical engineering; and Joseph Atkinson, professor of environmental engineering.

Melodia, Batalama, Pados, and Su are members of the Signals, Communications and Networking Research Group in the Department of Electrical Engineering, School of Engineering and Applied Sciences. Other members of the group are professors Adly T. Fam and Mehrdad Soumekh; associate professors Michael Langberg and Leslie Ying; and assistant professors Nicholas Mastronarde, Gesualdo Scutari, Zhi Sun and Josep M. Jornet.

The group carries out research in wireless communications and networking, cognitive radios, extreme environment (i.e., underwater, underground) communications, secure communications, data hiding, information theory and coding, adaptive signal processing, compressed sensing, multimedia systems, magnetic resonance imaging and radar systems.

Source: http://www.buffalo.edu/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.