Synthetically engineered biosensors, which can be designed to detect and signal the presence of specific small molecule compounds, have already unlocked many potential applications by harnessing bacterial cells such as E. coli to sense toxins or enable bioproduction of valuable commodities including fuel, plastics, and pharmaceuticals. As of yet, however, scientists have been challenged to leverage biosensors for use in eukaryotic cells — which comprise yeast, plants and animals — because strategies-to-date are limited in the molecules they can detect and the signals they can produce.
Researchers led by Carnegie Mellon University's Molecular and Biosensor Imaging Center (MBIC) Director Marcel Bruchez have re-engineered a fluorescent probe into a powerful optogenetic photosensitizer that can be used to manipulate cells.
FlexEnable, the leader in the development and industrialisation of flexible organic electronics, and ISORG, the pioneer in organic photodetectors and large area image sensors in printed electronics, have revealed the world’s first large area flexible fingerprint sensor on plastic designed for biometric applications.
Biointegrated sensors for long-term, continuous tracking of body chemistry may make health and disease monitoring as easy as turning on your smart phone.
An international research team formed by a University of Cincinnati (UC) cancer researcher has shown for the first time that a specific enzyme is responsible for sensing the available supply of GTP, an energy source that fuels the uncontrolled growth of cancer cells. The research underscores the enzyme's potential to become a therapeutic target for future cancer drugs.
In the next decade, people who have suffered a spinal cord injury or stroke could have their mobility improved or even restored through a radically new technology: implantable devices that can send signals between regions of the brain or nervous system that have been disconnected due to injury.
Despite seeming passive, plants wage wars with each other to outgrow and absorb sunlight. If a plant is shaded by another, it becomes cut off from essential sunlight it needs to survive.
Profusa, Inc., based here, today announced it secured $13.2 million in Series B financing to support the development and commercialization of its internal biosensor technology for long-term, continuous monitoring of body chemistry for improving personal health and managing disease.
VerifyMe, Inc., a pioneer in patented physical, cyber and biometric technology solutions that prevent identity theft, counterfeiting and fraud, announced today that it received a Notice of Allowance from the U.S. Patent and Trademark Office (USPTO) for patent application U.S. 13/910,482 titled “‘Home’ Button With Integrated User Biometric Sensing and Verification System for a Mobile Device.”
Viruses that attack bacteria - bacteriophages - can be fussy: they only inject their genetic material into the bacteria that suit them. The fussiness of bacteriophages can be exploited in order to detect specific species of bacteria. Scientists from Warsaw have just demonstrated that bacteriophage-based biosensors will be much more efficient if prior to the deposition on the surface of the bacteriophage sensor their orientation is ordered in electric field.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.